< «ИССЛЕДОВАТЕЛЬСКАЯ ДЕЯТЕЛЬНОСТЬ КАК СРЕДСТВО ФОРМИРОВАНИЯ ТВОРЧЕСКОЙ АКТИВНОСТИ УЧАЩИХСЯ ПРИ ОБУЧЕНИИ ФИЗИКЕ» Подготовила: учитель физики Шамраева С.Н.

Версия сайта

Главное меню

Дополнительное меню

МБОУ «Пятницкая средняя общеобразовательная школа

Волоконовского района Белгородской области»

 «ИССЛЕДОВАТЕЛЬСКАЯ ДЕЯТЕЛЬНОСТЬ КАК СРЕДСТВО ФОРМИРОВАНИЯ ТВОРЧЕСКОЙ АКТИВНОСТИ  

УЧАЩИХСЯ ПРИ ОБУЧЕНИИ ФИЗИКЕ»

Подготовила

Шамраева Светлана Николаевна

Учитель физики

 

С 2011 году образование переходит на новый федеральный государственный образовательный стандарт общего образования. Согласно стандарту второго поколения, цели и образовательные задачи представлены на нескольких уровнях - личностном, метапредметном и предметном. В основу стандарта второго поколения положены новые принципы его построения, которые основываются на том, что важнейшими условиями становления современной личности становятся такие качества, как инициативность, способность творчески мыслить и находить нестандартные решения . В Национальной образовательной инициативе «Наша новая школа» особо отмечается необходимость вовлечения школьников в исследовательские проекты, творческую деятельность, в процессе которых учащиеся учатся конструировать, изобретать, использовать полученные знания на практике . Одним из основных направлений образовательного процесса становится развитие способности учащихся к исследовательской деятельности. Исследовательская деятельность выступает как форма организации образовательного процесса, направленная на получение нового знания. В то же время целью исследовательской деятельности является не только конечный результат, но и сам процесс, в ходе которого развиваются исследовательские способности учащихся, формируется исследовательская компетентность.

Исследовательская деятельность осуществляется посредством решения исследовательских задач. Каждая исследовательская задача решается посредством выполнения определенной совокупности исследовательских действий. В первую очередь, учитель должен конкретизировать, какие исследовательские действия он должен формировать, исходя из содержания своего предмета: постановка исследовательских задач; планирование решения задач; выдвижение гипотез; построение измеряемых величин и измерительных шкал; сбор исходной информации (наблюдение и т.д.); экспериментирование; анализ данных экспериментов или наблюдений и построение обобщений; построение моделей действительности и работа с моделями.

В организации исследовательской работы большое значение имеет отбор учебного материала для всех исследований, который должен строго соответствовать основным принципам дидактики: научности, систематичности, последовательности, доступности, наглядности, индивидуальному подходу к учащимся в условиях коллективной работы, развивающему обучению, связи теории с практикой.

При организации исследовательской деятельности решаются следующие задачи:

  1. обучение учащихся на примере реальных проблем и явлений, наблюдаемых в повседневной жизни;
  2. обучение приемам мышления: поиску ответов на вопросы, видению и объяснению различных ситуаций и проблем, оценочной деятельности, приемам публичного обсуждения, умению излагать и отстаивать свою точку зрения, оперативно принимать и реализовывать решения;
  3. использование разных источников информации, приемы ее систематизации, сопоставления, анализа;
  4. подкрепление знания практическими делами, с использованием специфических для физики методов сбора, анализа и обобщения информации.

Рассматриваемый вид деятельности можно организовать на различных этапах урока; на различных типах уроков; на элективных курсах; а также во внеурочной деятельности. Система работы с учащимися отражена в схеме .

 Схема

 

 Исследовательская деятельность учащихся многогранна и может быть организована на любом этапе обучения физике: при изучении физической теории; при решении задач; при проведении демонстрационного эксперимента; при выполнении лабораторных работ. Массовая внеурочная работа – это интеллектуальные игры, олимпиады, конференции, телекоммуникационные проекты. Игры организуются в рамках предмет­ных недель.

В идеале исследовательская деятельность должна встраиваться в классно-урочную систему так, чтобы учитель мог сам компоновать необходимые ему учебные модули из отдельных элементов, они должны максимально учитывать действующие учебные программы и требования к учащимся.

Исследовательская работа учащихся начинается с постановки проблемы. При этом могут реализовываться следующие цели: углубление и расширение знаний учеников, привитие вкуса к исследовательской работе, развитие познавательного интереса, формирование исследовательских умений (например, таких, как видение структуры проблемы, прогнозирование, анализирование имеющейся ситуации, высказывание гипотез, планирование, сведение задачи к совокупности подзадач, конструирование, корректирование своих действий в соответствии с целью). Предметом ученического исследования является «переоткрытие» уже открытого в науке. Вместе с тем для ученика выполнение исследовательского задания является познанием еще непознанного. Можно выделить следующие структурные элементы исследовательской деятельности учащихся: накопление фактов, выдвижение гипотезы, постановка эксперимента, создание теории.

Выделение именно этих основных моментов при организации исследований учащихся связано с особенностями творческого процесса. Процесс научного творчества является циклическим, состоящим из звеньев: исходные факты → гипотеза → следствия → эксперимент → исходные факты. В современных условиях обучения представляется возможным осуществить изучение некоторых тем, используя не только логику и язык науки, но и ее исследовательский момент. Именно знакомство учащихся с методами исследования природы является одной из основных задач учителя физики.

Задания исследовательского характера вызывают усиленный интерес у учащихся, что и приводит к глубокому и прочному усвоению материала. При традиционной системе обучения практическая работа учащихся проводится, как правило, с целью закрепления теоретического материала и выполняется в соответствии с предложенной учителем инструкцией.

Необходимость активизировать умственную деятельность учащихся и развить их самостоятельность привела к использованию практических работ в качестве источника новых знаний. В этом случае создается конкретная возможность говорить о субъективном присвоении знаний, так как теперь самостоятельная работа учащихся носит не исполнительский, а исследовательский характер. Итогом работы на уроке становятся выводы, самостоятельно полученные школьниками как ответы на проблемный вопрос учителя. Активность учащихся определяется внутренними побудительными силами. Причем умственную активность сопровождает эмоциональный настрой, что приводит к развитию интереса к знаниям.

Приведу примеры конкретных уроков, целиком посвященных исследовательской деятельности учащихся, используемой на уроке в качестве источника новых знаний.

7 класс. Темаурока«Действиежидкости на погруженное тело».

Во время объяснения нового материала учащиеся ставятся в ситуацию исследователя. Учитель демонстрирует обычный опыт по растяжению пружины под действием груза, находящегося сначала в воздухе, а затем в воде. В беседе с учащимися выясняется существование выталкивающей силы. Именно теперь учитель предлагает перейти к серьезному научному исследованию, т. е. выяснить, от чего зависит выталкивающая сила.

Всякое исследование начинается со сбора и обсуждения фактов. Такие факты постепенно накапливаются в ходе беседы, когда учащиеся вспоминают различные явления природы и случаи из повседневной практики. Это помогает им сформулировать проблему урока и выдвинуть гипотезу.

Учащиеся предполагают, что выталкивающая сила зависит от объема погруженного тела, от его веса (или массы), от плотности жидкости, от глубины погружения тела, от формы тела. Учителю не следует отбрасывать неверные предположения: каждая из гипотез нуждается в экспериментальной проверке. Для этого на каждом столе приготовлены: рычаг, укрепленный на штативе, 2 стакана с водой, тела одного объема, но разной массы (калориметрические тела), поваренная соль, линейка, тела одинаковой массы, но разного объема (алюминиевый цилиндр из набора калориметрических тел и картофелина, предварительно обвязанные ниткой).

Учащиеся постепенно подвешивают тела к рычагу, добиваются его равновесия, а затем, погружая тела в воду, проверяют все выдвинутые гипотезы. При этом ученики, самостоятельно исследуя характер зависимости между физическими величинами, анализируют свои наблюдения, делают выводы, которые и приводят к окончательному построению теории (выводу формулы). За теоретическим толкованием формулы архимедовой силы может следовать экспериментальная проверка формулы с помощью опыта с ведерком Архимеда. В конце урока учащиеся снова анализируют факты, предлагаемые либо учителем, либо самими учениками, например: «На какое из тел действует большая выталкивающая сила?»,

«Почему все водяные растения обладают мягкими, легко сгибающимися стеблями?» и т. д. Приводимые факты и их объяснения можно снова проверить на опыте.

Таким образом, цикл научного исследования, на путь которого вступили ученики, оказывается замкнутым. Активность учащихся при проведении данного исследования способствует осознанию зависимости между конкретным и абстрактным содержанием темы, между практической и теоретической сторонами деятельности.

Аналогичны по методике проведения уроки в 8 классе при исследовании, от чего зависит количество теплоты, необходимое для нагревания тела, или в 11 классе при изучении законов колебания математического маятника. Естественно, что в 11 классе уровень теоретических обобщений и математической обработки результатов эксперимента должен быть значительно выше.

 8класс.Тема урока «Последовательноесоединение проводников» (аналогично методу проведения урока на тему «Параллельное соединение проводников»).

Структура данного урока, как и предыдущих, определяется звеньями цикла научного исследования, причем главную часть урока занимает экспериментальная проверка выдвигаемых гипотез и их теоретическое толкование. Надо стремиться к тому, чтобы проводимое на уроке исследование стало действенным стимулом познавательного интереса для каждого учащегося. Для этого необходимо создать в процессе работы условия, способствующие раскрытию пути исследования. С этой целью учитель разбивает все исследование на три этапа, соответствующие обнаружению зависимости между основными характеристиками электрической цепи. Учащимся предлагается на каждом этапе исследования записывать результаты в таблицу:

Какова сила тока в различных участках цепи?

I =

I1=

I2=

I =const

Как связано напряжение на участке АВ с напряжениями на последовательно включенных проводниках?

U =

U1=

U2=

U =U1+U2

Как связано сопротивление участка АВ с сопротивлением различных проводников?

R=U/I       R1=U1/I

R2=U2 /I

R =R1+R2

 

Здесь слева - цель каждого этапа работы, в других колонках - обработка результатов эксперимента и оформление теоретических выводов.

Заполнение таблицы на доске проводит учитель после тщательного обсуждения с учащимися каждого результата на данном этапе работы.

Завершающим этапом урока-исследования является анализ приводимых учащимися примеров практического использования последовательного соединения проводников.

В целях более активного привлечения внимания к результатам этого урока и следующего («Параллельное соединение проводников») учащимся дается задание изучить электропроводку в комнате, квартире; определить число потребителей, способы их включения; номинальные токи и напряжения, на которые они рассчитаны. Это позволит каждому ученику внести вклад в анализ фактов и выдвижение гипотезы исследования на каждом этапе урока.

 10 класс. Тема урока «Газовые законы».

Этот урок предполагает дедуктивный путь изучения темы. При этом, используя физическую модель идеального газа, из уравнения Клаузиуса получают закон Менделеева - Клапейрона, а из него все газовые законы.

Учащимся предлагается самостоятельно получить, аналитически и экспериментально исследовать уравнение состояния идеального газа при неизменности одного из параметров. Класс разбивается на три группы, каждая из которых получает следующие задания (для одного из законов):

1. Вывести закон аналитически.

  1. Предложить геометрическую интерпретацию закона в различных системах координат (р,V; р,Т; V,Т).
  2. Экспериментально проверить правильность закона.
  3. Подготовить доклад по истории открытия закона (это задание переносится на домашнюю работу).

План урока:

1)  Вступительное слово учителя о задачах урока. Объяснение значения исследовательской работы учащихся и порядка выполнения работы (5 мин).

2)          Самостоятельная работа учащихся (учащиеся в течение урока работают парами - 30 мин).

3) Групповое обсуждение результатов работы. Распределение обязанностей в группах для участия в конференции, посвященной истории открытия газовых законов (проводится на следующем уроке - 10 мин).

Для участия в конференции ученики получают задания по интересам. «Теоретики» на конференции должны показать вывод уравнения «своего» газового закона и объяснить его с точки зрения МКТ. Кроме того, они должны преобразовать уравнение для случая, когда температура измеряется по шкале Цельсия, и объяснить физический смысл входящих в формулы коэффициентов.

«Экспериментаторы» - подробно рассказать о газовом законе и показать опыты по его проверке.

«Математики» - дать геометрическую интерпретацию закона.

«Историки» - рассказать об истории открытия закона и его авторах.

«Инженеры» - рассказать о применении газовых законов.

Итак, от каждой группы на уроке-конференции выступит 5-6 человек с подробным изложением результатов классного и домашнего исследования.

Опыт показал, что самостоятельное исследование по определенной теме, особенно в том случае, если за ним следует отчет о его результатах перед всем классом, вызывает глубокий интерес учащихся и желание работать. Сама методика построения урока способствует поддержанию и развитию интереса к познавательной деятельности: есть «свой» закон, который надо получить, обосновать, подтвердить опытом, определить его жизненную значимость, и сделать все это достоянием всех учащихся класса. Причем желательно сделать не хуже, чем другие группы, а даже лучше. Разумное соревнование приводит к «присвоению» учащимися не только деятельности, но и результатов ее.

 Тема: ”Закон сохранения импульса”

Дидактическая цель: создать условия для осознания и осмысления блока новой учебной информации через метод научного познания.

Триединая дидактическая цель:

            Образовательная: способствовать формированию представления о замкнутой системе тел, пониманию закона сохранения импульса.

            Развивающая: способствовать развитию умения применять полученные знания в знакомых и новых учебных ситуациях, умения анализировать, выделять главное, делать вывод. Способствовать развитию физического мышления

            Воспитательная: способствовать воспитанию у учащихся желания самостоятельно добывать знания, быть уверенным в себе.

Ход урока

  1. Орг. момент.
  2. Актуализация.

ü  Что изучили на прошлом уроке?

ü  Что называется импульсом тела?

ü  Что называется импульсом силы?

ü  Получите выражение, связывающее импульс силы и изменение импульса тела на основе второго закона Ньютона.

ü  Прочитайте полученное выражение.

ü  Обладает ли шарик импульсом относительно стола?

ü  Что необходимо сделать, чтобы изменить импульс шарика?

ü  Действуют ли на шарик силы?

ü  Почему импульс шарика не изменяется?

  1. Целеполагание. Опыт: Взаимодействие двух шариков.

ü Какое явление мы наблюдаем?

ü Обладали ли шарики импульсом до взаимодействия? После взаимодействия?

ü Что произошло с импульсами шариков?

Итак, целью нашего урока будет: узнать, как изменяются импульсы тел при взаимодействии. А исходным фактом будет опыт, в котором мы убедились, что импульсы тел при взаимодействии изменяются.

Факт: Импульсы тел при взаимодействии изменяются.

Цель: Узнать, как изменяются импульсы тел при взаимодействии.

  1. Изучение нового материала.

Построим модель изучаемого явления.

Шарики также взаимодействуют с опорой и Землей. Но будем считать, что они взаимодействуют только между собой, т.е. образуют замкнутую систему.

Модель: Замкнутая система – это система тел, взаимодействующих только между собой.

Далее следует вывод формулы закона сохранения импульса (Фронтально, один ученик у доски). Геометрическая сумма импульсов тел замкнутой системы остается постоянной при любых движениях и взаимодействиях тел системы.

Это выражение называется законом сохранения импульса.

Вернемся к опыту с шариками. Что можно сказать о геометрической сумме импульсов шариков до и после взаимодействия?

Вернемся к цели урока. Узнали ли мы как изменяются импульсы тел при взаимодействии?

Из модели вытекают логичные следствия.

Следствия: давайте применим закон сохранения импульса для решения конкретной задачи: взаимодействие шариков, движущихся навстречу.

 
   

 Имея такое выражение, мы можем решить конкретную задачу. Пусть шарики одинаковой массы движутся навстречу с одинаковыми по модулю скоростями.

ü  Чему равна геометрическая сумма импульсов тел до взаимодействия?

ü  Какой можно сделать вывод?

Подумайте в парах, как еще могли бы двигаться шарики?

Домашнее задание: получить аналогично рассмотренному примеру выражение закона сохранения импульса для трех других способов движения шариков.

Вы никогда не задумывались, почему происходит отдача при выстреле из ружья? А ведь это явление объясняется тоже с точки зрения закона сохранения импульса (доклад ученика)

  1. Закрепление. Работа в группах: Объясните с точки зрения закона сохранения импульса данное явление (демонстрация полета надутого и отпущенного шарика).

Какой двигатель работает по такому же принципу?

Итак, экспериментальным подтверждением закона является очень важное движение – реактивное.

Эксперимент: Реактивное движение. Выход на тему следующего урока.

  1. Рефлексия.

Мы изучили закон сохранения импульса методом научного познания.

ü  Каковы его основные этапы?

ü  Что являлось исходным фактом? Моделью? Следствиями? Экспериментом?

ü  Какой этап, на ваш взгляд, является самым главным?

ü  Достигли ли мы цели урока?

. .